
Whitepaper #4 I Juni 2025

4Malte Grosse

4Cornelius Specht

4Peter Thies

Building the IKID Sandbox:
A Deep Dive into the Architecture
and Implementation of a Platform
for multi-dimensional AI Education
ai.hdm-stuttgart.de/research/ikid

Dieses Werk ist lizenziert unter der Creative Commons Attribution 4.0 Lizenz (BY). Diese Lizenz erlaubt unter Voraussetzung der Namensnennung
des Urhebers die Bearbeitung, Vervielfältigung und Verbreitung des Materials in jedem Format oder Medium für beliebige Zwecke, auch kommerziell.
(Lizenztext: https:// creativecommons.org/licenses/by/4.0/deed.de). Die Bedingungen der Creative-Commons-Lizenz gelten nur für Originalma-
terial. Die Wiederverwendung von Material aus anderen Quellen (gekennzeichnet mit Quellenangabe) wie z.B. Schaubilder, Abbildungen, Fotos und
Textauszüge erfordert ggf. weitere Nutzungsgenehmigungen durch den jeweiligen Rechteinhaber.

Whitepaper #4: Building the IKID Sandbox

A Deep Dive into the Architecture
and Implementation of a Platform
for multi-dimensional AI Education
by Malte Grosse, Cornelius Specht & Prof. Dr. Peter Thies

Funding organisation:
Bundesministerium für Bildung und Forschung (BMBF) and Ministerium für Wissenschaft, Forschung und
Kunst (MWK) des Landes Baden-Württemberg (Förderkennzeichen: 16DHBKI040)

IKID Project Management:
Prof. Dr. David Klotz – klotzd@hdm-stuttgart.de
Hochschule der Medien Stuttgart, Nobelstraße 10, 70569 Stuttgart

Editor:
Marcel Schlegel

Design and Layout:
Michelle Stegner and Marcel Schlegel

Cover image:
Graphic generated with Dall:e

Publisher:
Digipolis Verlag
Sina Klauke, Tramweg 8, 77966 Kappel-Grafenhausen
kontakt@digipolis-verlag.de
www.digipolis-verlag.de

https://doi.org/10.70481/rck1-6tm3

Suggested citation for this whitepaper edition:
Grosse, Malte/Specht, Cornelius/Thies, Peter (2025): Building the IKID Sandbox: A Deep Dive into the Archi-
tecture and Implementation of a Platform for multi-dimensional AI Education. In: Whitepaper-Serie zum
Forschungsprojekt IKID: Interdisziplinäres KI-Exploratorium. Kappel-Grafenhausen: Digipolis Verlag.
https://doi.org/10.70481/rck1-6tm3

Building the IKID Sandbox

Table of Contents

01	 Introduction										 6	

02 	 Requirements										 7

03 	 Design and Implementation								 9

04 	 Conclusion and Outlook								 19

Building the IKID Sandbox

Abstract

Disclaimer: This document was originally composed by human authors. To enhance clarity and readabi-
lity, it has been further refined using Large Language Model (LLM) technology, demonstrating the capa-
bilities of modern AI tools in augmenting human creativity and productivity.

The IKID Sandbox is a platform designed to facilitate
the research and application of artificial intelligence
(AI). It provides a secure environment for users of all
levels of experience in the field of AI, with a particular
focus on security, efficiency and user-friendliness.
The modular architecture using Kubernetes makes
it possible to ensure the availability and scalability
of the chosen open-source applications. Role-based
access control and isolated training environments
protect sensitive information. The sandbox provides
tools for various user groups, including a powerful
web-based development environment, a data pool
for data sharing and reliable AI training pipelines for
computationally intensive machine learning tasks.

This white paper is generally aimed at people who
want to gain insights into the architecture of the
Sandbox. Lecturers can also use this white paper to
familiarise themselves with the tools provided and
integrate them into their syllabus. For students, it
offers the opportunity to explore the used contai-
nerised software components or the general soft-
ware architecture. g

01

Introduction

Interdisciplinary AI Exploratorium: Integrated Teaching
for the Responsible Use of Artificial Intelligence based on
Physical-Virtual Demonstrators is a project funded by the
Federal Ministry of Education and Research and the Mi-
nistry of Science, Research and Arts Baden-Württemberg:
Interdisziplinäres KI-Exploratorium: Integrierte Lehre zur
verantwortungsvollen Nutzung Künstlicher Intelligenz auf
Basis physisch-virtueller Demonstratoren or short IKID.

The majority of AI teaching courses often present a narrow
perspective, focusing solely on the technical aspects of
AI. However, responsible AI usage demands a comprehen-
sive understanding of its impact on society, which inclu-
des economic, legal, and ethical considerations. The IKID
project aims to bridge this gap in higher education by ad-
opting an interdisciplinary approach.

The project introduces the concept of an “AI Explorato-
rium” (“German: ‚KI-Exploratorium“), a unique environ-
ment that showcases the complexity of AI through dif-
ferent interactive use cases, such as face recognition. To
ensure accessibility and accommodate diverse student
backgrounds, a user-friendly IT infrastructure is essen-
tial. Therefore, next to other initiatives within the AI ex-
ploratory, the project has opted for a containerized server
infrastructure, allowing students to explore and develop
AI use cases using their own devices or through a shared
platform: The IKID Sandbox.

This infrastructure serves as the foundation for an integ-
rated teaching environment, enabling concurrent student
projects and research activities. The Sandbox offers a col-
laborative space where lecturers and students can work
independently on case studies within a shared data pool.
Additionally, the Sandbox playground enhances machine
learning, including advanced training pipelines, providing
a safe and controlled environment for students to experi-
ment and gain valuable insights into AI usage.

The following document outlines the Sandbox‘s core re-
quirements: a browser-based development environment,
a use case environment for collaborative AI development,
a robust training environment for complex model training,
and a data pool with diverse datasets. It then delves into
the technical architecture, detailing the hardware speci-
fications and a three-part virtual machine setup for effi-
cient resource management. The whitepaper describes
the implementation of each software component, inclu-
ding containerization, ingress and reverse proxy for secure
communication, authentication and authorization with, a
centralized database, a Git-based version control system,
a package repository for software artifacts, and an object
storage solution. The paper concludes by highlighting the
Sandbox‘s flexibility, scalability, and user-friendliness,
emphasizing its potential as a valuable resource for AI
education and its ongoing evolution to integrate emer-
ging AI technology. g

01 Introduction6

02

Requirements

General

The development of the Sandbox was a collaborative ef-
fort involving lecturers and students to ensure it met their
diverse needs. The IKID Sandbox caters to a diverse range
of users with varying levels of technical expertise. Basic
users, primarily focused on the societal impacts of AI,
such as those teaching or exploring use cases in ethics,
business, and law, can utilize the Sandbox‘s pre-built in-
teractive examples, demos, and course material. They can
also leverage the platform for collaborative assignment
editing and feedback. Advanced users, typically from IT
backgrounds, are empowered to develop and share their
own examples and demos, leveraging the Sandbox‘s po-
werful infrastructure for tasks like model training and
deployment. This dual approach ensures the platform‘s
relevance and accessibility for both technical and non-
technical audiences engaged in AI education.

Three key areas emerged from discussions with these sta-
keholders that the Sandbox should address:

Firstly, a platform-independent development environment
was deemed essential because it enables users to access
the Sandbox remotely, ensuring that learning could con-
tinue uninterrupted, regardless of physical location. Such
a development environment also allows for a more flexible
and dynamic learning experience, catering to diverse user
preferences and capabilities.

Secondly, a training environment for AI models was iden-
tified as a crucial component. This space would allow stu-
dents and lecturers to experiment, train, and test their AI
models in a controlled environment. It provides a safe space
to explore the potential of AI, gain practical experience,
and develop valuable skills in this rapidly evolving field.

Lastly, the need for a data pool containing case studies
and training data was emphasized. This resource would
offer real-world examples and experimental data, enhan-
cing the teaching and learning of AI following the princi-
ples of research-based learning. By providing access to
diverse datasets, students can apply their knowledge to

02 Requirements 7

Figure 1: Overview of the Sandbox Components.

practical scenarios, developing critical thinking skills and
a deeper understanding of AI applications.
These components collectively form a comprehensive
Sandbox, catering to the needs of lecturers and students
in the field of AI education. It provides a versatile and dy-
namic learning environment, fostering experimentation,
remote accessibility, and a practical understanding of AI
and its potential applications.

Based on the identified requirements, the Sandbox’s con-
ceptual design should include four major functionalities:

Firstly, an interactive, browser-based, (i) Development
Environment provides beginners and advanced users
with an isolated and safe AI playground.

Second, the platform features a web-based, interactive
(ii) Use Case Environment designed to provide scalable
and efficient computational resources. Users can create,
edit and run use cases in their browsers, benefiting from
the integrated environment to dynamically allocate com-
puting power, manage resources, and ensure high availa-
bility. This setup allows for seamless collaboration, repro-
ducibility, and the ability to handle complex data science
workflows and provide a playground for AI, making it ideal
for researchers, educators, and developers.

Third, the (iii) Training Environment empowers users with
a suite of flexible and advanced toolsets. This includes ac-
cess to Graphics Processing Unit (GPU)-supported high-
memory/Central Processing Unit (CPU) instances, ideal
for tackling computationally intensive tasks and long-
running training pipelines. For enhanced reproducibility
and collaboration, the environment utilizes isolated con-
tainers with full version control, all seamlessly managed
by a robust infrastructure. This ensures a consistent and
scalable platform for scientific workflows.

Fourth, the (iv) Data Pool provides for a wide range of users
by offering a variety of flexible data storage options. Basic
and advanced users alike can leverage the user-friendly
Sandbox browser-based explorer for intuitive data ma-
nagement. Figure 1 depicts the IKID Sandbox environment.
The existing Learning Management System and Identity
Management are external services which are provided by
the educational institution.

Hardware Components

Delineating from the Sandbox architecture and intended
functionalities, the requirements for the server hardware
were diverse and demanding, needing to balance power-
ful GPU computing capabilities for AI model training with
the ability to handle intensive CPU application workload.
This led to the following specifications: To meet these de-
mands, the server was equipped with an AMD 2x 32 Core
CPU, ensuring enough processing power for running de-
velopment environments and database applications. The
8x 64GB memory modules provide robust support for
handling large datasets and complex tasks. For storage,
a combination of SSDs and HDDs has been installed: 2x
1.6TB Fast SSDs offer quick access to frequently used
data, while 6x 0.48TB SSDs provide additional high-speed
storage. Additional 8x 2.4TB HDDs offer space for larger
datasets and long-term storage needs. Additionally, an
NVIDIA A100 80GB GPU has been included, ensuring the
server has the capacity for AI model training and handling
demanding computational tasks. The server also employs
additional hard disks as part of a comprehensive back-
up solution, ensuring data redundancy and security. This
server configuration balances performance and storage,
catering to the diverse needs of AI model development
and traditional application demands. It provides a versa-
tile platform capable of meeting the requirements speci-
fied by the stakeholders. g

02 Requirements8

03

Design and Implementation

Overview of the IKID Sandbox Architecture

From a technical perspective, the primary objective was
to devise an architectural framework for the IKID Sandbox
that embodies stability, safety, flexibility, and extensibility.
To achieve this, distinct application layers were isolated
within separate virtual machines, thereby ensuring secu-
rity and isolate sensitive components from public-facing
interfaces. This modular design enables maintenance ope-
rations, such as incremental updates or system upgrades,
to be performed on selected components without inducing
downtime for publicly accessible applications. Further-
more, the architecture is intended to facilitate seamless
and sustainable scalability by permitting the addition of
new servers without requiring the deployment of additio-
nal management services on these new hardware assets.

A three-part system architecture, seen in the lower part of
Figure 2, is used as the basis for the Sandbox. Three virtu-

al machines (VM) are used on the server, each of which is
assigned to a task group. The first VM acts as a manage-
ment environment, mastering associated services located
in other nodes of the cluster. The second VM provides all
applications/services that are made available to both in-
ternal and external user groups. The third VM operates as
the worker node, handles graphical processing (services
and drivers), and supports various software agents. Due
to the chosen architecture, it is possible to provide GPU-
dependent services only on the third VM. However, all VMs
can access storage (HDD + SSD), CPU and memory. Expe-
rience has shown that these are limited to the respective
application area. For example, the worker node requires a
particularly large amount of memory for optimal utiliza-
tion of the graphics card.

Based on the requirements, the following hardware and
software components have been identified as essential
and are incorporated into the system.

Figure 2: Sandbox Architecture.

03 Design and Implementation 9

Software Components

In the following we identify the core software components
and describe the specific software artifacts, which we se-
lected, and why we integrated them into the IKID Sandbox.

This section will not only give a general introduction to
each component but also describe the individual software
tools and technologies selected. Also, clear and concise
reasons behind each choice are provided, highlighting
their suitability and alignment with the general objecti-
ves and requirements of the project.

Containerization

Component Introduction: Containerization is a software
packaging and deployment approach that bundles an ap-
plication‘s code, libraries, dependencies, and configuration
files into a single, portable unit called a container. These
containers run in isolated environments, ensuring consis-
tency across different computing environments and sim-
plifying deployment. Benefits of containerization include
enhanced portability, improved resource utilization, faster
startup times, streamlined development and deployment
cycles, increased scalability and fault isolation. It enables
developers to easily move applications between develop-
ment, testing, and production environments without com-
patibility issues. Containerization is thus a critical compo-
nent of deploying software artifacts within the Sandbox.

IKID Sandbox Implementation: In order to provide a com-
prehensible and thus sustainable development approach,
Kubernetes (K8s) was chosen, as it offers the benefits of
the declarative configuration and access control.

Kubernetes is an open-source container orchestration
platform that automates the deployment, scaling, and
management of containerized applications. It provides
a robust framework for running distributed systems on
a cluster of nodes (servers) at scale. K8s offers a robust
platform for deploying and managing containerized appli-
cations, offering key advantages such as high availability
through automatic Pod replication, effortless scalability
via node adjustments, self-healing capabilities that restart
failed containers, simplified configuration management
with declarative YAML or JSON files, and the support of
a large and active community, providing a wide range of
tools and resources.

K8s can be broken down into these key components:

(i) Pods: The smallest deployable unit in Kubernetes. A pod
represents a single instance of an application, containing
one or more containers.

(ii) Services: Define how your application is exposed to
the outside world. Services provide a stable endpoint for
accessing applications running within Pods.

03 Design and Implementation10

Figure 3: Sandbox Container Architecture.

03 Design and Implementation 11

(iii) Controllers: Manage the lifecycle of Pods, ensuring
that the desired number of Pods is always running and
scaling up or down as needed, such as Deployments, Sta-
tefulSets and DaemonSets.

(iv) Namespaces: Isolate resources within a cluster, all-
owing for better organization and access control.

(v) API Server: The central control plane for Kuberne-
tes. It receives commands from users and manages
the cluster state.

(vi) etcd: A distributed, reliable key-value store used by
Kubernetes to store configuration and state information.

(vii) kubelet: A daemon that runs on each node, responsible
for managing Pods and communicating with the API server.

(viii) kube-proxy: A network proxy that handles service
discovery and load balancing for Pods within the cluster.

Faced with a variety of Kubernetes options, k0s1 emerged
as our chosen solution due to its compelling advantages.
k0s distinguishes itself through its lightweight and sin-
gle-binary nature, simplifying deployment and manage-
ment. Moreover, k0s boasts a streamlined architecture and
minimal dependencies, enhancing security and reducing
potential vulnerabilities. These combined benefits make
k0s a compelling choice for our Kubernetes implemen-
tation, offering both operational efficiency and a robust
security posture.

As seen in Figure 3, we decided to deploy a Controller
Node on our Management VM, which is connected via
OpenID to our Identity Management. The Application VM
hosts our foundation software stack which is needed for
all further applications and development. Hereby, we in-
clude the Sandbox Controller, which automatically starts
new isolated WebIDE containers for the users. In addition,
we place our database, version control, the CI/CD control
plane and object storage, as well as reverse proxy to pu-
blish HTTPS endpoints.

Our system architecture leverages three virtual machines:
a Management VM hosting the Controller Node, which con-
nects to our Identity Management system via OpenID for
secure authentication, and an Application VM containing
our foundational software stack. This stack includes the
Sandbox Controller, responsible for automatically provi-
sioning isolated WebIDE containers for users, alongside
centralized services like the database, version control, CI/
CD control plane, object storage, and an ingress/reverse
proxy for publishing secure HTTPS endpoints.

The Worker VM is dedicated to deploying on-demand
isolated container environments, leveraging the NVIDIA
Container Toolkit to enable GPU acceleration for both
development tasks and resource-intensive, long-run-
ning training processes. This setup provides a robust
and efficient environment for streamlined development
and deployment processes.

Ingress and Reverse Proxy

Component Introduction: Ingress and reverse proxies are
essential components in a containerized environment for
managing external traffic to services within a cluster. An
Ingress Proxy is a resource that serves as a single entry
point for external users to access services within a cluster.
It defines rules for routing incoming traffic to these ser-
vices based on hostnames, paths, and other criteria. In-
gress resources allow for secure communication through
TLS/SSL termination. Importantly, ingress itself does not
handle the actual routing logic but relies on external in-
gress controllers to implement the defined rules.

A reverse proxy is a server that acts as an agent between
clients and backend services, receiving incoming requests
and directing them to the appropriate backend server ba-
sed on configuration rules. Reverse proxies typically hand-
le a variety of functions to optimize application delivery.
These include load balancing to distribute traffic across
multiple servers, SSL termination to offload encryption
processing, rate limiting to protect against overwhelming
traffic, and caching to improve performance by storing
frequently accessed content. Public-facing endpoints
must be equipped with up-to-date, valid certificates to
guarantee robust security for the Sandbox when a user
transmits data to our services.

IKID Sandbox Implementation: Within the Kubernetes
ecosystem, ingress controllers serve as intelligent gate-
keepers, meticulously managing external traffic destined
for services residing within the cluster. They maintain a
constant dialogue with the Kubernetes API server, conti-
nuous monitoring for changes to ingress resources – the
rules that dictate how external requests are directed.
Upon detecting any modifications, the ingress controller
dynamically adjusts its configuration, ensuring seamless
traffic flow according to the latest directives.

External traffic seeking access to services within the clus-
ter is routed through a Kubernetes service, typically of
type „LoadBalancer“ or „NodePort,“ which acts as the en-
try point to the ingress controller. This setup brings seve-
ral technical advantages. It provides a centralized point
for managing all ingress traffic, simplifying administration
and boosting security. Moreover, users benefit from a sin-
gle, consistent access point, while performance enhan-
cements like load balancing and caching optimize traffic
distribution and accelerate response times.

Our infrastructure requires a publicly accessible endpo-
int on port 443 to facilitate secure communication with
deployed services. Utilizing a wildcard domain DNS name
(*.sandbox.iuk.hdm-stuttgart.de) grants the flexibility to
host multiple services under this subdomain, each ac-
cessible via its unique subdomain. The chosen solution
for this purpose should not only route traffic to the ap-
propriate service but also handle HTTPS certificates, in-
cluding automatic renewal, ensuring seamless and secure
connections for all services.
While several options like Nginx2 etc. exist, Traefik emerges

as a strong contender, fulfilling all our requirements. Its
proven track record in container environments and com-
prehensive feature set, including robust routing capabili-
ties and automated HTTPS certificate management, make
it a natural fit for our Kubernetes deployment. This prior
experience with Traefik3 gives us the confidence to lever-
age its capabilities within our Kubernetes infrastructure.

Authentication and Authorization

Component Introduction: Authentication and authori-
zation are fundamental security concepts for controlling
access to systems and resources. Authentication verifies
the identity of a user or entity, ensuring they are who they
claim to be. This is commonly achieved through methods
like username/password logins, multi-factor authentication
(MFA), or biometric verification. On the other hand, autho-
rization determines the level of access an authenticated
user has to specific resources or actions. It defines what
a user is permitted to do once their identity is confirmed,
like viewing specific data or modifying settings.

In today‘s web-centric world, OpenID Connect (OIDC) and
OAuth 2.0 have emerged as crucial standards for secure
authentication and authorization. OAuth 2.0 focuses on
delegated authorization, allowing users to grant third-par-
ty applications access to their resources on another ser-
vice without sharing their credentials. OIDC builds upon
OAuth 2.0, adding a standardized layer for authentication.
It enables users to verify their identity through a trusted
identity provider and share their verified information with
web applications securely.
By employing these standards, developers can streamline
authentication and authorization processes while enhan-
cing security. Users benefit from a seamless experience,
as they can often leverage their existing accounts with
providers like Google or Facebook to access various web
services without creating new credentials for each plat-
form. This reduces password fatigue and improves over-
all user experience.

In enterprise environments, Lightweight Directory Access
Protocol (LDAP) often plays a pertinent role in managing
user identities and access permissions. LDAP serves as
a centralized directory for storing and retrieving user in-

formation, including usernames, passwords, and group
memberships. By integrating OIDC or OAuth with an exis-
ting LDAP infrastructure, organizations can leverage their
centralized identity management system for web-based
authentication and authorization. This integration enables
single sign-on (SSO) capabilities, allowing users to access
multiple applications with a single set of credentials sto-
red in the LDAP directory.

To ensure security and control access to its resources,
the Sandbox requires robust authentication mechanisms
for both administrative and regular user roles. This mul-
ti-tiered authentication process will verify the identity of
users, ensuring that only authorized individuals can per-
form administrative tasks or access sensitive information
within the Sandbox.

IKID Sandbox Implementation: Identity management
(Identity Provider/IDP), also known as identity and ac-
cess management (IAM), is a framework of policies and
technologies to ensure that the right users have the ap-
propriate access to technology resources. It is one of the
core elements in modern enterprise software architecture.

Designing a new software architecture, security aspects
should always be considered first. It is the foundation of
every other piece of software which will later be deployed.

The current IT infrastructure at HdM offers a limited way
to internally authenticate members of the organization
by LDAP4. For the Sandbox, no specific group or role ma-
nagement is applicable or accessible within the existing
infrastructure.

To implement a modern authentication and authorization
system with fine-grained control, we require a dedicated
Identity Provider (IDP) that fulfills specific criteria. The cho-
sen IDP solution must be enterprise-grade, open-source,
well-maintained, and capable of scaling to thousands of
users. Crucially, it needs to support LDAP user federation,
leveraging our existing infrastructure for both security and
a seamless user experience. Essential features include
single sign-on, multi-identity brokering (OpenID Connect,
SAML 2.0, Kerberos), and optional social login capabilities.
The IDP should also facilitate user management based on

Figure 4: Identity Management Flow.

03 Design and Implementation12

roles and groups, offer theme customization, and be hos-
ted externally to ensure the stability and availability of our
core services. Figure 4 describes the expected authenti-
cation/authorization flow for the Sandbox.

After researching several identity providers, including
Gluu5, Authelia6, Keycloak7, and Authentik8, we determined
that Keycloak aligns best with our requirements. Keycloak
fulfills all our needs, boasts a long history of maintenance
and a positive reputation on GitHub, and benefits from the
support of Red Hat9, indicating its stability and reliability.
This combination of comprehensive features, maturity,
and strong community support makes Keycloak the ideal
choice for our identity management needs. Therefore, we
deployed customized and connected to the internal LDAP
system on a separate external VPS instance at https://
auth.iuk.hdm-stuttgart.de.

To enable remote authentication and authorization, we first
deployed the k8s plugin kubelogin10 on our infrastructure.
This plugin facilitates a secure approach to remotely ma-
naging Kubernetes clusters as seen in Figure 5.

It leverages OpenID Connect (OIDC), a well-established
authentication protocol, to establish trust between the
user and the Kubernetes API server. This mechanism eli-
minates the need for pre-shared credentials, mitigating
potential security vulnerabilities associated with traditi-
onal password-based authentication. By delegating aut-
hentication to a trusted OpenID Connect provider, kube-
login enhances the overall security posture of Kubernetes
cluster management. Further details and technical spe-
cifications regarding the plugin can be found on the Git-
Hub repository. For all services the newly deployed iden-
tity management will be used.

Database

Component Introduction: In complex software systems
composed of multiple interconnected components like the
IKID Sandbox, a centralized database serves as a reposi-
tory for shared data, ensuring consistency and facilitating
efficient data management. By consolidating data into a
single location, organizations can eliminate redundancy,
improve query performance, and streamline data adminis-
tration tasks. This centralized approach offers numerous
advantages, including enhanced scalability, simplified di-
saster recovery, and improved data sharing capabilities.
Additionally, by providing a single source of truth, it re-
duces the risk of data inconsistencies and enables more
effective data analysis and reporting.

Recognizing that modern applications rely heavily on data-
bases, the Sandbox must include a scalable database so-
lution. This approach will provide a robust and adaptable
foundation for applications within the Sandbox, allowing
them to store and manage data effectively while accom-
modating potential growth and evolving requirements.

IKID Sandbox Implementation: While simplistic solutions
such as static configuration files and embedded databases
like SQLite may suffice for small-scale applications, their
limitations become apparent when deployed in distribu-
ted environments with substantial user loads such as the
IKID Sandbox. To accommodate the demands of our com-
plex systems a centralized, open-source database capa-
ble of handling concurrent access and large datasets is
indispensable.

Due a comprehensive analysis of the core applications
required a database solution that could effectively ma-
nage the anticipated data load. PostgreSQL11, owing to

Figure 5: Cluster Authentication.
Source: https://raw.githubusercontent.com/int128/kubelogin/master/docs/credential-plugin-diagram.svg

03 Design and Implementation 13

its robust feature set and widespread adoption, emerged
as a suitable candidate. However, deploying and mana-
ging PostgreSQL across a cluster environment manually
proved to be labor-intensive and error-prone. To stream-
line this process and enhance reliability, the open-source
cluster manager StackGres12 was selected. This platform
offers automated deployment of multiple database ser-
vers, coupled with essential functionalities such as back-
up and restoration, thereby optimizing database manage-
ment within a complex infrastructure.

For all services which require a database, our StrackGres
deployment is utilized.

Version Control System

Component Introduction: Version control (also known
as revision control, source control, or source code ma-
nagement) is a class of systems responsible for managing
changes to computer programs, documents, large web-
sites, or other collections of information. A version control
system (VCS) is a software tool that tracks and manages
changes to code over time, acting as a time machine for
your projects. By recording every modification, VCS ena-
bles developers to revert to previous versions, collabora-
te efficiently, and gain valuable insights into code history.
Git13, the industry standard, offers a distributed approach,
allowing teams to work independently and merge changes
seamlessly. For independent individual activities, develo-
pers could use branching features to stage commits and
have a chronological commit history. Beyond code, VCS
can also manage other project files but is most common
for code tracking.

A robust version control system is essential for the Sand-
box to support internal and external software development
efforts effectively. This system will serve as a central re-
pository for code, and other project artifacts, facilitating
collaboration, tracking changes, and ensuring code integ-
rity throughout the development lifecycle.

IKID Sandbox Implementation: To establish a code hosting
and management platform accessible to both our internal
Sandbox team and external students or lecturers, we re-
quire an open-source solution that meets specific crite-
ria. The ideal platform should be well-regarded within the
open-source community, support OAuth2 authentication
for secure access, and offer a modern and intuitive web
interface. While optional, integrated package management
capabilities, including support for container and Python
repositories, would further enhance the platform‘s utility.

Git meets these requirements. It is a distributed version
control system that tracks changes in any set of compu-
ter files, usually used for coordinating work among pro-
grammers who are collaboratively developing source code
during software development. Its goals include speed, data
integrity, and support for distributed workflows. While a
headless Git server provides version control, it lacks in-
tegrated user management. GitLab14, though feature-rich,
presents licensing uncertainties for its advanced features.

Therefore, we opted for Gitea15, a rapidly growing open-
source platform with a clear licensing model. Its adoption
by reputable non-profit projects like Codeberg16 further
promotes Gitea‘s capabilities and suitability for our needs,
providing a robust and transparent solution for our code
hosting requirements.

A significant advantage is its integrated universal package
registry, allowing us to host container images and Python
packages seamlessly without requiring additional infras-
tructure or management overhead.

Package Registry

Component Introduction: A package registry is a cen-
tralized repository for storing and managing reusable
software packages. Developers can publish, discover,
and install packages using these registries, accelerating
development by leveraging pre-built components. They
function as a marketplace, allowing developers to share
code and collaborate effectively. While package registries
offer benefits like code reuse, dependency management,
and faster development cycles. Beyond traditional soft-
ware packages, modern package registries also support
other artifact types, including Python libraries and con-
tainer images. This expanded scope enables developers
to manage a broader range of project dependencies, stre-
amline deployment processes, and foster a more compre-
hensive development ecosystem.

IKID Sandbox Implementation: The IKID Sandbox requires
a dedicated package registry to effectively manage and
deploy its other software components. This registry will
serve as a centralized repository for storing and distribu-
ting customized containers, self-made packages, and ot-
her software artifacts specific to the Sandbox ecosystem.
As mentioned in the previous paragraph, the package re-
gistry was deployed using Gitea.

Continuous Integration and
Continuous Delivery/Deployment

Component Introduction: CI/CD, short for Continuous
Integration and Continuous Delivery/Deployment, revo-
lutionizes software development by automating the ent-
ire software lifecycle. Continuous Integration (CI) ensures
a robust codebase by frequently merging code changes,
triggering automated builds and tests to catch integrati-
on errors early on. Continuous Delivery (CD) picks up from
there, automatically preparing software releases for de-
ployment, whether to staging environments for further
testing or directly to production. This guarantees that
software is always in a deployable state, ready to rapidly
deliver new features.

The beauty of CI/CD extends beyond traditional software to
complex machine learning workflows. Consider the lengthy
process of AI model training. CI/CD pipelines can automa-
te data preparation, model selection, training execution,
and even performance evaluation. This automation carries
through to deployment, integrating the trained model into

03 Design and Implementation14

production applications, and establishing ongoing moni-
toring and retraining as needed. This not only accelerates
the deployment of AI models but cultivates a continuous
improvement cycle, where rapid feedback on code, data,
and model performance leads to faster development, qui-
cker issue resolution, and ultimately, a more robust and
efficient machine learning process.

To streamline and automate its software development
and machine learning workflows, the Sandbox environ-
ment needs to implement robust CI/CD.

IKID Sandbox Implementation: To increase the speed and
the quality of software development, a universal CI/CD
pipeline needs to be provided which offers an easy syn-
tax for build recipes and is highly extensible such that a
GPU can be included in order to run long running AI trai-
nings in an isolated environment. The integration (auto-
matically deployments within the cluster) is not needed
for our particular use case.

We have evaluated continuous integration/continuous de-
livery (CI/CD) platforms like Travis CI17, Jenkins, and Dro-
ne18. The appeal of container-based build pipelines led us
to strongly consider Drone. However, due to a licensing
change in Drone, we opted for its community-driven fork,
Woodpecker19, as our CI/CD solution.

Our adoption of container-based build steps, coupled with
GPU support, allows us to leverage existing containers
from Dockerhub20 or GPU-enabled solutions from provi-
ders like NVIDIA21 22. These solutions readily offer frame-
works like TensorFlow23 and PyTorch24, streamlining our
training process.

Graphics Processing Unit

Component Introduction: GPUs excel in machine learning
due to their parallel processing power. Thousands of cores
allow simultaneous operations on large datasets, drama-
tically accelerating training and inference. Their optimi-
zation for matrix operations, the cornerstone of machine
learning algorithms, delivers significant performance gains.
Furthermore, high memory bandwidth ensures swift data
transfer, crucial for handling massive datasets.

The NVIDIA A100 takes these capabilities a step further
with its advanced time-slicing features. This allows the
GPU to partition its resources and execute multiple tasks
concurrently, maximizing utilization and ensuring efficient
processing even for diverse workloads.

Moreover, the A100‘s vGPU (virtual GPU) capability enables
the division of a single physical GPU into multiple isola-
ted virtual GPUs. Each vGPU operates with dedicated re-
sources, providing performance predictability and isola-
tion for multi-tenant environments, further amplifying the
A100‘s utility in demanding machine learning scenarios.

By leveraging the time-slicing and vGPU capabilities, a sin-
gle NVIDIA A100 can effectively serve multiple users with
concurrent machine learning capabilities. This simulta-
neous access allows for efficient resource allocation and
provides each user with a dedicated and isolated environ-
ment for their specific machine learning tasks.

IKID Sandbox Implementation: The graphics card driver
is essential for high-performance machine learning, unlo-
cking a range of functionalities. It acts as a critical bridge

Figure 6: Virtual GPU Architecture.

03 Design and Implementation 15

between software and hardware in our Sandbox, enabling
complex computations, optimized memory management,
and accelerated data processing, ultimately driving effi-
ciency and speed in machine learning tasks.

We created a sustainable GPU configuration that serves
both basic and advanced users. To achieve this, we divi-
ded our A100 GPUs into two distinct resource pools using
NVIDIA Container Toolkit (cf. Figure 6). Advanced users, pri-
marily those running continuous integration (CI) and long
training pipelines, receive dedicated access to fixed-size
virtual GPUs (vGPUs) of 2x20GB. This guarantees them
consistent, predictable performance for their resource-
intensive tasks.

Basic users, typically working on the playground or exe-
cuting short-running GPU tasks within WebIDE’s, benefit
from a more dynamic allocation. A single 40GB vGPU is
time-sliced into ten smaller portions, allowing multiple
users to share the resource efficiently. This approach op-
timizes GPU utilization by catering to the varying demands
of different user groups.

Web-based Integrated
Development Environment

Component Introduction: A Web-based Integrated De-
velopment Environment (WebIDE), is a powerful, open-
source development environment designed with ease-of-
use in mind. Hosted on a web browser, it provides a clean
and intuitive interface for building and running small ap-
plications or demonstrating specific use cases. Its true
strength lies in its extensibility and customization opti-
ons. Developers can leverage a rich ecosystem of existing
plugins or readily create their own to tailor the WebIDE to
their exact requirements. This combination of user-friend-
liness and extensibility makes a WebIDE an ideal platform
for a wide range of users. Beginners can quickly grasp
the basics and start developing, while experienced users
have the flexibility to integrate advanced functionalities
and create highly specialized development environments.
Whether used for rapid prototyping, educational purposes,
or showcasing specific technologies, a WebIDE‘s adaptabi-
lity ensures a powerful and customized user experience.

To further enhance its capabilities and broaden its appeal, a
WebIDE should provide both novice and experienced users
with straightforward, remote access to machine learning
tools. This accessibility will empower a wider audience to
explore, experiment with, and leverage the power of ma-
chine learning, fostering innovation and spreading access
to this transformative technology.

IKID Sandbox Implementation: After careful evaluation of
web-based development environments, including Visual
Studio Code25, AWS Cloud926 and JupyterHub27. Finding a
WebIDE to accommodate users with a wide range of skill
levels presents significant challenges. Out of all competi-
tors, JupyterHub was selected as the foundation for this
project. It has a user interface that prioritizes simplicity,
clarity, and extensive customization options. Another im-

portant advantage is a fully open-source platform that of-
fers a clean and intuitive interface for developing, running
small applications, and writing formatted text.

A WebIDE serves as a controlled execution environment
for use case demonstrations that are available to users
with different skills. The different skill groups are defined
on the project requirements. Pre-defined resource sharing
enables efficient experimentation by minimizing configu-
ration overhead. Utilizing JupyterHub‘s extensible archi-
tecture, the WebIDE implements a plugin system, enabling
the utilization of pre-existing extensions and the develop-
ment of functionalities tailored to specific requirements.

Object-Storage

Component Introduction: Object storage is a specialized
data storage architecture designed to handle the ever-
growing volume of data, such as multimedia files, back-
ups, and large datasets. Unlike traditional file systems that
rely on hierarchical structures, object storage organizes
data as discrete units called objects, each identified by a
unique key. This approach eliminates file path limitations
and enables massive scalability and cost-effectiveness,
especially for storing infrequently accessed data.

The key advantages of object storage lie in its inherent
scalability, cost efficiency, durability, and accessibility. Its
ability to horizontally scale by simply adding more storage
resources makes it ideal for handling exponential data
growth. Furthermore, the use of data replication ensures
high availability and resilience against hardware failures.
Finally, accessibility through RESTful APIs enables seam-
less integration with modern applications and ensures
data is readily available wherever and whenever needed.

To align with modern application development practices
and to leverage the benefits of scalable storage solutions,
the Sandbox environment needs to incorporate support
for object storage.

IKID Sandbox Implementation: To host backups, large
structured and unstructured data, a S3 API28 compatible
object storage is needed. The advantage of having S3 API
compatibility is that it allows for seamless integration with
numerous applications that already support this widely-
used interface. Furthermore, implementing a system with
multiple distributed drives enhances data protection by in-
creasing fault tolerance. This means that even if one drive
fails, the data remains accessible and protected from loss.

MinIO29, a leading and cutting-edge object storage solu-
tion, is purpose-built for containerized environments like
Kubernetes and distributed deployments. Its robust fea-
ture set includes OpenID support, enabling advanced user
management capabilities within its web-based interface.

To ensure high availability and prevent data loss despi-
te having only one server, we‘ve opted for a single-node,
multi-drive MinIO deployment. This configuration utilizes
four drives, with two hosted locally on the server and two

03 Design and Implementation16

mounted from an external network attached storage (NAS)
via the network file system protocol (NFS). While MinIO‘s
distributed mode typically requires four instances with a
tolerance for two failures, our setup leverages multiple
drives to achieve similar redundancy. This ensures conti-
nued read-only access to data, even in the event of two
drive failures.

The storage solution will serve multiple roles, encom-
passing daily backups of database dumps and Gitea re-
lated data (excluding Git Large File Storage (LFS) and pa-
ckages). Additionally, the object storage provides versatile
file sharing capabilities through both command-line and
web-based interfaces.

Additional Tools

Two supplementary services have been integrated to ex-
pand the data pool. The first is a CLI-based REST API fa-
cilitating binary sharing, while the second is a graphical
user interface to make file sharing among diverse user
groups available.

A straightforward ShareCLI REST API (rest2s330) was imple-
mented to facilitate the upload of binary data to an object
storage. Uploaded files are automatically deleted after a
certain period based on the predefined expiration policy.

ShareUI, is a streamlined file-sharing server that offers
temporary file storage with expiration based on download
count or time. Functionally similar to the discontinued Fi-
refox Send, it distinguishes itself by restricting uploads
to administrators. This architecture empowers individuals
and organizations to effortlessly share files while optimi-
zing disk space and maintaining granular control over file
distribution. An API facilitates programmatic interaction,
and cloud storage integration with AWS S3 is supported
as an alternative to local storage. Customizable interfaces
can be created using HTML and CSS, and encryption, in-
cluding end-to-end options, is available. g

03 Design and Implementation 17

03 Design and Implementation18

Notes & Links

1	 https://k0sproject.io
2	 https://nginx.org
3	 https://www.traefik.io
4	 https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
5	 https://gluu.org
6	 https://www.authelia.com
7	 https://www.keycloak.org
8	 https://goauthentik.io
9	 https://www.redhat.com
10	 https://github.com/int128/kubelogin
11	 https://www.postgresql.org
12	 https://stackgres.io
13	 https://git-scm.com
14	 https://www.gitlab.com
15	 https://www.gitlab.com
16	 https://codeberg.org
17	 https://www.travis-ci.com
18	 https://www.drone.io
19	 https://woodpecker-ci.org
20	 https://hub.docker.com
21	 https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
22	 https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tensorflow
23	 https://www.tensorflow.org
24	 https://pytorch.org
25	 https://code.visualstudio.com
26	 https://aws.amazon.com/de/cloud9
27	 https://jupyter.org/hub
28	 https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
29	 https://min.io
30	 https://github.com/CSpecht/rest2s3

This white paper has outlined the overall technical design
of the IKID Sandbox, a platform crafted to support the re-
sponsible exploration and application of AI within higher
education. By integrating a carefully curated selection of
open-source technologies, the Sandbox provides a secu-
re, scalable, and user-friendly environment for both novi-
ce and experienced users alike. The modular architecture,
centered around Kubernetes for containerization, ensures
flexibility and adaptability, allowing the system to readily
accommodate future growth and evolving needs.

Key design choices, such as the implementation of robust
authentication and authorization mechanisms through
identity management, coupled with secure communication
protocols and isolated containerized environments, emp-
hasize security aspects within the Sandbox. The strategic
utilization of a centralized database, efficient object sto-
rage, and a fully flavoured version control system further
contributes to a robust and reliable platform.

Moreover, the Sandbox enables user experience without
compromising functionality. The intuitive WebIDE caters
to diverse skill levels and tools like ShareUI/ShareCLI allow
file sharing and collaboration. By prioritizing accessibility
and ease of use, the Sandbox empowers a wider audience
to engage with AI technologies, fostering innovation and
spreading access to this transformative field.

The IKID Sandbox, with its well-defined architecture, ca-
refully selected technologies, and commitment to secu-
rity and user experience, is poised to become an invalua-
ble resource for responsibly teaching and learning about
AI. By providing a controlled yet versatile environment
for exploration, experimentation, and collaboration, the
Sandbox lays a strong foundation for fostering a deeper
understanding of AI and its potential impact on society.

The IKID Sandbox has been designed not as a static entity
but as a dynamic platform with a sustainable and extensi-
ble architecture, primed for ongoing evolution and adap-
tation. This inherent flexibility ensures its continued rele-
vance and utility beyond the initial project phase. As the AI
landscape continues to evolve at an electrifying pace, so
too will the Sandbox, readily incorporating new tools and
technologies to remain at the forefront of AI education.
During development, we have remained agile and respon-
sive to the rapid advancements in the field of AI. We exten-
ded our initial work packages to prioritize the integration
of technologies like modern state-of-the-art AI tools, rat-
her than solely focusing on the initial scope. This proactive
approach is reflected in the integration of cutting-edge
technologies, including Large Language Models (LLMs) for
natural language processing tasks, facial recognition sys-
tems for computer vision applications, audio transcription
tools for speech analysis, and reinforcement learning en-
vironments for exploring agent-based learning paradigms.

This commitment to continuous improvement ensures
the IKID Sandbox remains a valuable resource for the fo-
reseeable future, empowering educators and learners to
confidently navigate the ever-expanding frontiers of AI.
By providing a flexible and future-proof platform, the IKID
project paves the way for a new generation of AI practitio-
ners equipped with the knowledge and tools to shape the
future of this transformative technology responsibly. g

04

Conclusion and Outlook

04 Conclusion and Outlook 19

Imprint20

Building the IKID Sandbox
Imprint

The whitepaper series on the interdisciplinary research project “IKID: Interdisciplinary AI
Teaching” is dedicated to the emerging field of artificial intelligence in university didactics.
A total of six issues deal with AI-relevant competences, interdisciplinary AI teaching
concepts, exemplary teaching methods and didactic forms of teaching. Furthermore a
technical infrastructure is introduced in which students can learn the relevant skills and
abilities.

Editor:
Marcel Schlegel

Design and Layout:
Michelle Stegner and Marcel Schlegel

Contact:
Prof. Dr. David Klotz – klotzd@hdm-stuttgart.de
Hochschule der Medien Stuttgart, Nobelstraße 10, 70569 Stuttgart

Publisher:
Digipolis Verlag
Sina Klauke, Tramweg 8, 77966 Kappel-Grafenhausen
kontakt@digipolis-verlag.de
www.digipolis-verlag.de

https://doi.org/10.70481/rck1-6tm3

