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The Concept behind Player Immitation

Within the context of video games and AI, player imitation refers to an AI agent that imitates the 

behavior of a player. In an abstract sense, the goal of the AI is to play "like" the player. This is too 

vague of a goal for an AI to work with however and therefore a more exact formulation is:

Given a situation, the AI agent should enact the same actions as a player would in the same situation. 

This includes mistakes players make or patterns/strategies players employ. Looking at this from a 

machine learning lens, all we really are trying to do is predict player actions and use the prediction as 

input for an AI agent. Lucky for us, prediction is a common usage 昀椀eld of machine learning research, 
and something AI excels at.

Application
It might not be immediatly self evident why bots that play like clones of humans have any merit, so 

lets look at some of the major bene昀椀ts. First a study by Soni et al.    has shown that human-like bots 

are more interesting to play with. This bene昀椀ts imitation bots too, as a bot perfectly imitating a hu-

man should be pretty humanlike.  Additionally imitation AI enables utility in the following aspects of 

video games: Player training, AI behaviour designing, AI Stand-ins, and Narrative bene昀椀ts. 
The AI system allows players or game developers to engage with game AI in new ways which can 

drastically improve the play experience or game design process.

DesigningNarrative Stand-ins
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Within competitive games, especially adversarial games where players play against other players, 

having human-like AI is a huge bene昀椀t. This is because humans have some behavioral quirks that are 
hard for conventional AI methods to replicate, such as reaction times and predictable yet adaptable 

behavior patterns.

Due to this normal AI opponents are often insu昀케cient as sparing partners in preparation to play 
against real humans. The strategies to beat a normal AI largely boils down to exploiting its set-in-

stone behavior patterns, while beating a human-like agent requires far wider mastery over the game. 
But this is only the downside of common AI approaches, on top of negating these downsides immita-

tion based AI also has a decent amount of bene昀椀ts unique to it:

Community-powered
The AI system can be set up to automatically learn from any player playing the game, and create an 

AI replica of that player, which will be stored in the cloud. The bene昀椀t of this is a huge library of AIs 
of di昀昀erent skill levels and playstyles available to both the developer to design content with and for 
other players to play against. Players can then use these AI opponents for ego-safe o昀툀ine practice, 
which has the bene昀椀ts of in昀椀nite replayability, since the AI opponent is endlessly available for train-

ing, unlike a real human. 

Player Training 

AI Champions
Most competitive games will have famous players 

known for their skills and success in competitive 

settings like tournaments. The average play-

er will realistically never get to practice with 

these champions, but AI clones of them could 

be available for every single person who wishes to 

learn from them.

Meta adaptation
AIs that keep learning from players during a 

game’s lifetime will keep learning new tech-

niques and strategies as the game ages, without 
the need of the developer to adapt the AI at all. 

The bene昀椀t of this is that AI practice partners 
will never be outdated.
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Self-reflection
Not only can players play against copies of other players, but they can also play against copies of 
themselves. The bene昀椀t of this might not be immediately obvious, but this allows players to re昀氀ect 
on their own mistakes or bad behavior patterns unlike anything else. Anytime the AI makes a mis-

take that the player can exploit, that mistake is a re昀氀ection of the behavior the player engages in. And 
if the player learns to exploit that behavior, the AI will learn to exploit it too. This in return forces 

the player to adapt and 昀椀x the exploitable behavior. Due to this feedback loop, the AI system should 
always be at the same skill level of the player, giving them the opportunity to improve.

Stand-ins
Team games that rely on cooperation between players can bene昀椀t from AI stand-ins. In these games, 
two or more players usually form a team that aims to win the game together. Commonly these games 

are played online over the internet, which leads to problems when one or more players in the team lose 

their connection. Usually, the game is then paused until the disconnected player reconnects because the 

loss of one player even for a short duration can set a team back signi昀椀cantly in competitive games. This 
leads to frequent waiting times in multiplayer games. 

An alternative solution would be stand-in AI for the player that disconnected. With normal AI this 

would result in an unfair advantage or disadvantage to the team with the AI, as the disconnected player 

might be a worse or better player than the AI. An imitation AI should be about as good as the discon-

nected player however and also copy the player's play patterns, which lets it serve as a good temporary 

stand-in for a human.
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Demonstration
Outside of just playing against AI bots, the AI system can also be used for demonstration purposes. 

For example: If a player is lost in a certain game state and doesn’t know what to do, or maybe they 
know what to do but would like to see a more optimal way of doing it, the player could have an AI 

bot demonstrate what a highly skilled player would do in the same situation. Especially coupled with 

replay systems this could be a potent tool for learning. A player wishing to know how they could 

have played better might watch a replay of them losing a match, pause the replay and see what a 

better player might have done in a given situation. Coupled with the AI system being meta-adapting, 

this could essentially function as an adaptive advanced tutorial system that can show players the 

correct behavior in any given situation. 

Further Benefits

AI behaviour design
A problem with AI systems currently utilized in the gaming industry is that they requires expert 
knowledge to be adapted. This means that if a gaming studio wishes to have modular AI that behaves 

di昀昀erently in di昀昀erent scenarios, the AI programmer needs to frequently adapt the AI system to suit 
the vision of the game designers. With an imitation-based AI system, any layman can create their 

own AI behavior simply by recording their own actions. If a designer wants an AI that constantly 

jumps, all they have to do is record themselves playing the game and constantly jumping. This al-

lows game designers to at the very least prototype di昀昀erent AI behavior rapidly without the necessity 
of an AI programmer. It also opens up completly new game mechanics about teaching AIs behaviour 

to ful昀椀ll the players goals, like having real time strategy games where the micro controlling of units 
is replaced with prior training of the units AI.
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Narrative
The combination of the events and activities of the gameplay aligning with the narrative the game is 

trying to tell is called the Ludo-Narrative. Unlike movies and other non-interactive narrative media, 
games bene昀椀t from combining their game mechanics with the narrative of the story or can be hurt by 
the clash of the gameplay with the narrative. 

For instance, playing a game in which the player has the freedom to kill random NPCs while the 
player character is portrayed as a paci昀椀st in the narrative will evoke what is called Ludo narrative 
dissonance. This dissonance a昀昀ects the story usually negatively. In the example, the character of the 
protagonist would be hard to take seriously in their struggles for non-violent con昀氀ict resolution if the 
player just killed a dozen of NPCs beforehand.

The bene昀椀t of Imitation AI in relation to the narrative is then that it adds game mechanics to narra-

tive elements that prior had little in the way of game-play representation. Namely imitation.
The scenario is not uncommon in games, 昀椀ghting an opponent that is a re昀氀ection of yourself, or that 
learned to copy your behavior, or maybe it turned out you are just one of a thousand clones that all 

act just like you. 

Usually, these NPCs are shown to be similar to the player by looking like the player character and 
having the same or a similar move set. The actual behavior patterns for 

these copies are usually completely di昀昀erent from the player 
character, however, causing disbelieve in the narrative that 

these copies are really the same as the player charac-

ter. Imitation-based AI perfectly solves this issue, 

but that is not the only narrative aspect it can be 

used for. 

When it becomes hard to tell humans and 

AI apart game designers can use this for 

narrative tricks.

Games that rely on simulating a large num-

ber of humanlike NPCs can use AI to fake 
populated worlds. Or coop games can use 

AI to play tricks on the player, with them not 

knowing if the person they are playing with 

is actually a human ally or an AI copy of 

them in disguise. 
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Implementations - Deep Learning

We took a look at the potential of imitation based AI, but how does it work out in practice?

Few games have actually implemented imitation AI, but was it at least successful in those that did 
implement it? 

Samurai Shodown
Samurai Shodown or Samsho is a 1vs1 昀椀ghting game. The entire game-state of Samsho plays on a 
2D plane and the goal of both players is to hit the opponent until their life depletes to 0. Fighting 
games like Samsho are a great environment to implement novel AI approaches, as the parameter 
count comprising the game state of the game is relatively low. This is because the environment in 

most 昀椀ghting games is standardized, meaning that even if di昀昀erent levels are chosen, the choice is 
only an aesthetic di昀昀erence. Additionally, character actions are also set in stone and cannot be cus-

tomized by the player. This makes for a reliable and predictable environment perfect for competitive 

settings like tournaments where 昀椀ghting games strive, but also a great environment for AI to learn. 
So how did Samsho implements its imitation AI? Sadly no detailed information about the architec-

ture of the system is available, but it is known know that their Ghost system as it is called is powered 

by neural network-based deep learning. 

The goal of the ghost AIs was to create a clone AI of the players playing, copying their exact behav-

ior and letting other players play against them. Sadly the ghost AIs aren't working out so great. Users 
have described them as broken, and indeed video footage indicates that these AIs seem to break quite 
easily, getting locked in a loop of repeating bad actions. 

Creating imitation-based AI doesn't seem as easy as just throwing deep learning at it, even in a rela-

tively simple game space like 昀椀ghting games.
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Forza's Drivatar
Forza is a racing game that distinguishes itself from other titles by basing its mechanics on physics 
simulations. This means that vehicle steering is heavily a昀昀ected by all sorts of aspects like the weight 
of the car, the material of the tires, the roughness of the road, or the weather conditions of the racing 

track. 

Players can customize their vehicles heavily and they also have a large number of vehicles available 

to choose from. Combined with the great variety of tracks available to drive on, the game state di昀昀er-
ences available in Forza seem quite large compared to that of most 昀椀ghting games. 
Yet Forza's Drivatar system has been working well for quite a while, and unlike Samurai Shodown 
there is enough information on their Drivatar system to understand how they made it work.

Like Samsho, Forza's Drivatar also uses neural networks that learn by observing player behavior. 
However, unlike the prior, the aim of the Drivatar AI isn't to 100% copy player behavior. Instead, the 

goal is to roughly model how a player would behave in any given situation. This is because the AI 

also needs to be able to deal with situations that the player has never experienced, like driving a car 

the player never used, or racing on a track the player has never driven on. 

So how is the player behavior modeled?
Forza employs a separate AI system from Drivitar which models the optimal way to race on a given 
track, which can be seen as arrows on the racetrack. This optimal path is then employed as a base-

line from which the players deviate. The job of the neural network is then to learn the deviation of 

the player it is trying to model and generalize this behavior for situations that are similar but not the 

same.
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Generalization is important to avoid the AI from collapsing the moment it encounters a new situa-

tion it has not observed yet. To generalize the player behavior the developers created di昀昀erent cate-

gories of curves and had the neural network learn player behavior for the di昀昀erent categories. This 
then allows the AI to re-use behaviors on roads that the AI had not learned on yet. A sharp curve in 

any map will look relatively similar, and the neural network can use the optimal path as a baseline 

for adaptation. All of this e昀昀ort is necessary because generalization has a major problem. Given the 
same input, minor di昀昀erences in a game-state can result in major di昀昀erences in outcome. If you took 
a corner very tightly in one track, the same way of taking the corner might have you crash into the 

wall because the track is a little narrower. 

On top of this, the Drivatar system has an additional layer to adapt AI behavior. This layer exists to 

make sure AI opponents aren't exhibiting game-disturbing behavior, like ramming the player con-

stantly or just drifting in circles endlessly. Drivatars also utilize rubber banding, meaning that when 

they fall too far behind the player the car controlled by the AI will perform better. This is to ensure 

that the AI opponents can catch up and the race is still tense. 

Overall Forza's system does a good job of model and generalizing player behavior, but doesn't entire-

ly imitate player behavior.
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Killer Instinct
Killer Instinct, like Samurai Shodown, is a 2D 昀椀ghting game, with largely 
similar mechanics, at least from an AI development stantpoint. The actual 

gameplay the player experience is noticably di昀昀erent. The action space is very 
similar to Samurai Shodown in that its 1v1, players try to hit eachother, 
character states and stages are predictable, etc. But unlike Samsho, its im-

plementation of imitation AI is generally considered successful. 

The di昀昀erence between the two is that Killer Instincts AI 
system uses a technique named Case-Based Reasoning or 
CBR for short, which does not use neural networks to learn. 
Players create their AI clones initially by playing against three 

di昀昀erent AI opponents designed to test the player's actions 
in common game-states like how the player deals with 

projectiles, with up-close combat, or with jumping op-

ponents. Afterward, the player can train their AI clone by playing against the 

AI clone or by playing against the AI clones of other players.

Implementations - Case-Based Reasoning
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Case-Based Reasoning
The concept of case-based reasoning is relatively simple in comparison to neural networks. The idea 

is that we save past actions in combination with the game state so that we can replay them later on in 

a similar game state. The visual demonstrations stem from my own implementation in Ikemen Go, 

but the concept is the same as Killer Instincts.

In the case of Killer Instincts, we save actions like attacking or movement and add metadata to it 

about the game state like the position of the characters, the status of the characters like if they are 

attacking, jumping, or getting hit, and any other relevant variable for decisionmaking. The same 

concept can be implemented purely with player inputs as well, by grouping a sequence of inputs into 
a case and adding metadata to it.

Once we saved enough of these cases, we can activate the imitation AI, which will search through 

the metadata of all of the cases to 昀椀nd the case that is the most similar to the current game state. 
It will then keep replaying that case and following cases until the game state is no longer similar 

enough to the metadata within the currently playing case. At this point, the AI will search for the best 

case again and restart the cycle.

Case-Based Reasoning

(Own Illustration)



Before the AI can make any decisions on which actions to take it needs a collection of cases to 

search for actions. Therefore we need an algorithm to generate those cases, which will do in two 

steps. First, we will record reaply data of some gameplay and then split the recording into cases with 
added metadata.

Recording
The recording process can vary but generally is very similar to the recording process of replay 昀椀les. 
Our goal is to record data that lets us re-create the entire match so we can watch it again. Commonly 

this is done by recording the player inputs for every frame of the game, but other methods exist as 

well. The main di昀昀erence for CBR usage is that we want to annotate our recordings with metadata, 
as that will be necessary information to store the metadata for our case. What game variables we 

choose to save as metadata depends what variables we consider important for our AI decisionmak-

ing.

Case Creation
Once we have saved the recording of an entire match we need to decide how to split this replay into 

cases. This is necessary because saving every frame as its own case would require huge amounts of 
data, and also lead to a large amount of redundant cases with almost identical game-states. There 

are no hard rules on how to separate replays into cases but my implementation model follows these 

rules:

1. When a character takes an action that moves it into a new state a new case is made starting with 

the input. 

2. When a character is forced into a new state a new case is made starting with the new state.

3. When a character moves without changing states a new case is generated every ~0.2 seconds.

The point of splitting replays like this is to make it more likely to catch the decision points of the 

player, while also making sure that cases aren't made too frequently to better capture sequences of 
actions. But the above services only as an example and the case generation algorithm should be tai-

lored to the game it is implemented in.

When separation points in the replay have been found we need to create the data structure for the 

case. This can be done by saving the metadata for the case, and a pointer to the segment of the replay 

昀椀le that the case represents, but other approaches work as well. Finally, we save the case in a data 
structure, called the case base, to preserve the sequential nature of the replay. We do this to preserve 
chains of actions players engaged in.

Case-Based Reasoning - Generation
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Case-Based Reasoning - Replaying

Once we have enough cases for the AI to function we can now use those cases to make our AI func-

tion. To do so we need to make sure we have an algorithm to 昀椀nd a case, choose the best case, and 
then play the case back.

Case Searching
Before we can 昀椀gure out which case is the best one to use we need to solve two problems:
When do we search for a new case, and how do we e昀케ciently search for the best case?

Searching for a new case every frame results in performance issues, in addition, to constantly inter-
rupting whatever chain of actions the AI was about to perform. It's also not very humanlike behavior. 

Humans don't consider their next actions 60-120 times a second. 

So we need an algorithm to determine when to check for a new case. In the Ikemen implementation 
this is done with the following rules:

1. When a case is 昀椀nished playing, search for the best case in the case base.  
Compare the best case to the next case that would naturally be played next from the array. Only 

if the best case is signi昀椀cantly better than the next case do we use the best case, else we will play 
the next case in the array.

2. If a drastic game state change occurs, search for the best case in the case base 

and play that, even if another case was currently playing.

The purpose of these rules is to ensure that sequences of actions that are 
saved as sequences of cases have a high likelihood to play out. But also 
allow the AI a frequent opportunity to switch cases if there is 
a far better case available. The drastic game state change 

rule exists to ensure that the AI doesn't have a terrible 

reaction time. In Ikemen, a drastic game state change 

would be the AI getting hit for example.

Once we know when to search we now need an algorithm that 

actually does the searching. The easiest variant is just loop-

ing over the entire case base, but that is also performance 

ine昀케cient. A better option is utilizing a search and sort 
algorithm that index the case base based on its parameters 

and searches for the most similar case without having to 

look at the entire case base.
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Case Selection
To evaluate whether a case is similar to the current game state we need comparison functions. These 

functions evaluate individual parameters and assign some value to the similarity of these parameters. 

For instance, the health of the player could be a parameter that we compare between the case and 
the game state. As an example, if the health of the player in the case is at 10% and it is at 100% in 

the game our comparison function would put out 0.9 as a dissimilarity score. This dissimilarity score 

indicates that the di昀昀erence between the case is 90% dissimilar, where 100% is the maximum dis-

similarity possible.

We will run comparisons like this for every single parameter and add weights to those parameters to 

make sure some parameters are treated as more important.

In our example, the health dissimilarity score is 0.9 and the player position dissimilarity is 0.1. The 

position is a more important variable so we weigh it times 5 while we weigh the health only times 1. 

This means that the position beeing similar to the gamestate is 5 times as important as the life. The 

best case at the end of this process is the case with the lowest dissimilarity score, and that will be the 

case we end up choosing.

Replaying
Replaying is basically the same as it is for any replay 昀椀le. If we saved the player's inputs with the 
case we simply feed those inputs to our AI character and have the character execute them.

base.

(Own Illustration)



Case-Based Reasoning - Drawbacks

While the theory behind CBR is relatively simple it does come with quite a few drawbacks com-

pared to a deep learning approach:

1. The comparison functions by which the metadata gets compared to the current game state are 

usually expertly crafted. This is necessary because the evaluation of which parameter has higher 

priority when deciding one's course of action requires in-depth knowledge of the game. It is ther-
oretically possible to automate the comparison function evaluation through algorithms or deep 

learning, however.

2. The AI data is quite sizable compared to neural network models as it is composed of annotated 
replay 昀椀les. This also means that the more the AI learns the bigger its size will be.

3. Because the number of cases stored can become quite a lot, the AI can negatively a昀昀ect the per-
formance of the game, as searching for an optimal case takes a while.

4. Without adapting the method to better generalize it is poorly equipped to deal with new situa-

tions that it has not observed before. 

A lot of these drawbacks can be mitigated or alleviated through 

clever adaptation of the system or by combining it with other AI 

systems, but even relatively barebones CBR systems can serve 
their purpose very well already.
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Conclusion

Part of the reason why I am personally so invested in imitation AI is that its is potential, just lying on 

the table waiting to be grasped. It was already utilized successfully, it is not substantially more work 

than other AI approaches, and it opens up tons of possibilities for video games that are almost com-

pletely unexplored.  

A big reason for this is that despite arti昀椀cial intelligence being a hot topic garnering a lot of attention 
from the general public, it hasn't taken up much space in the games industry yet. Novel AI approach-

es have already been successfully implemented in AAA video games, but have not spread further 

than their initial experiments. AI systems being subpar shouldn't be the standard in modern video 

games, when there are more successful AI solutions that failed to catch on.  

 

This might be partially a marketing issue, while AI is a hot topic, it's hard to convey to consumers 

why a special AI makes a game more entertaining. AI is hard to visualize, which is why AI-based 

media generators, like the art generator Dall-E 2 work best to garner interest. General audiences 

don't need to understand the AI process and its bene昀椀ts, they just need to see the generated output to 
know the AI does something worthwhile.

 

So I advocate for anyone who desires an improvement in the medium of video games to take a look 
at imitation AI, play Killer Instinct or Forza to experience the potential, and spread the word. And for 
any video game developers that caught interest to utilize the system. The source code for my imple-

mentation in Ikemen is available here: https://github.com/KDing0/Ikemen-GO

But even without the source code, the system is not hard to re-create from the outlines given in this 

paper.
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